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Abstract. Plants simultaneously interact with multiple organisms which can both
positively and negatively affect their growth. Herbivores can reduce plant growth through
loss of plant biomass and photosynthetic area, while plant mutualists, such as mycorrhizal
fungi, can increase plant growth through uptake of essential nutrients. This is the first study
examining whether species-specific associations with mycorrhizal fungi alter plant tolerance to
herbivory. We grew Plantago lanceolata plants with three species of mycorrhizal fungi
previously shown to have differential impacts on plant growth and subjected them to
herbivory by the specialist lepidopteran herbivore, Junonia coenia. Association with
mycorrhizal fungus Glomus white provided the greatest growth benefit but did not alter plant
response to herbivory. Alternatively, association with Archaeospora trappei provided less
growth promotion but did lead to tolerance to herbivory in the form of an increased growth
rate. Finally, an association with the fungus Scutellospora calospora led to neither plant
growth promotion nor tolerance to herbivory. In fact, an association with S. calospora
appeared to reduce plant tolerance to herbivory. An association with all three species of
mycorrhizae resulted in a pattern of growth similar to that of plants grown only with Glomus
white, suggesting that growth promotion by multiple mycorrhizal species is driven by the
inclusion of a ‘‘super fungus,’’ in this case, Glomus white. This work illustrates that plant
response to herbivory depends upon the mycorrhizal fungal mutualist with which a plant is
associated.

Key words: herbivory; Junonia coenia; multitrophic interactions; mycorrhizal fungi; nonadditive
effects; Plantago lanceolata; resource allocation; sampling effect; tolerance.

INTRODUCTION

Plants simultaneously interact with multiple organ-

isms which can both positively and negatively affect

their growth. Herbivory, for example, can reduce

photosynthetic area, plant fitness, alter plant allocation

patterns, increase plant defenses, and even lead to plant

death while mutualists such as mycorrhizal fungi can

form symbiotic associations that often improve plant

growth and survival. Moreover, plants may interact with

multiple herbivores or mutualists at the same time.

Individual plants, for example, may associate with many

species of mycorrhizal fungi which differ greatly in their

effect on plant growth (Bever 2002, Vandenkoornhuyse

et al. 2003). The complexity of these interactions makes

it difficult to predict plant response, or the response of

plant mutualists, unless all the interactions are additive.

Plants associated with a single species of mycorrhizal

fungi have demonstrated a wide array of growth

responses (Smith and Read 1997), but what is the result

of an association with multiple fungal species? Growth

responses with multiple fungal species may be the

average of growth promotion by each individual fungal

species or may increase with each additional species of

mycorrhizal fungi (van der Heijden et al. 1998) or they

could be driven by the inclusion of a ‘‘super fungus’’

(Wardle 1999). To date, no study, to our knowledge, has

attempted to separate these different potential mecha-

nisms behind growth promotion of plants associated

with multiple mycorrhizal fungal species.

In addition to altering plant growth responses,

mycorrhizal fungi can alter plant responses to herbivory

in a number of ways (Bennett et al. 2006). Mycorrhizal

fungi may induce changes in plant quality, plant

defenses, and plant tolerance (Bennett et al. 2006).

However, understanding the mechanisms behind my-

corrhizal fungal mediation of plant response to herbiv-

ory has been elusive, at best. For example, conflicting

results have been reported for investigations of mycor-

rhizal fungal effects on plant tolerance. No tolerance

(Borowicz 1997, Gange et al. 2002, Kula et al. 2005),

tolerance (Gange et al. 2002, Kula et al. 2005), and

increased tolerance (Kula et al. 2005) of plants

associated with mycorrhizal fungi have been demon-

strated within and between studies.

The conflicting effects of mycorrhizal fungal impacts

on plant tolerance may result from the very different

ecologies present among plant host species and mycor-
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rhizal fungal species. The host plant species used in the

previous studies described above are all likely to vary in
resource allocation patterns, growth, and tolerance, and

this variation is likely to increase in the presence of
different mycorrhizal mutualists. An examination of

plants associated with three different species of the
arbuscular mycorrhizal fungal genera Glomus revealed
that plants demonstrated different growth patterns and

received different herbivore loads in association with
different fungal species (Gange et al. 2005), suggesting

that individual mycorrhizal fungal species could effect
plant responses to herbivory. Both herbivores (reviewed

in Karban and Baldwin 1997) and mycorrhizal fungi
(Bever 1994, Charron et al. 2001) have been shown to

alter plant resource allocation to storage structures and
roots. As a result, we would expect plants associated

with mycorrhizal fungal partners to vary in tolerance,
allocation to storage, and root to shoot ratios both in

the absence and in the presence of herbivory.
The purpose of this study was twofold: we were

interested first in whether plant response to herbivory
depends upon the species of mycorrhizal fungi present

and second in whether the plant response to individual
mycorrhizal fungal species predicts the plant response to

a community of mycorrhizal fungi. In order to test these
questions we grew Plantago lanceolata with three species
of mycorrhizal fungi (individually and in combination)

that had previously been shown to vary in their effect on
plant growth when associated with P. lanceolata, and

subjected plants to herbivory by Junonia coenia larvae.

METHODS

Study system

We examined Junonia coenia (also known as Precis

coenia) butterflies feeding on Plantago lanceolata plants
associated with three different arbuscular mycorrhizal

fungal (AMF) symbionts. All three of these species
(butterfly, plant, and fungi) coexist in the same old field

on the Duke University campus in Durham, North
Carolina, USA. Plantago lanceolata is a Eurasian weed
widely distributed across the United States in old fields,

mowed lawns, and disturbed sites. Junonia coenia, a
native butterfly, feeds on members of the Plantagina-

ceae, and prefers to feed on Plantago lanceolata, because
it contains the carbon-based secondary compounds

derived from iridoid glycosides (commonly considered
to be defensive chemicals; Duff et al. [1965], Bobbitt and

Segebarth [1969]). Junonia coenia larvae sequester the
iridoid glycosides found in plantain leaf tissues (Bowers

and Puttick 1986, Bowers and Collinge 1992), and are
thus considered specialists on this family.

Like many plants, Plantago lanceolata associates with
arbuscular mycorrhizal fungi, mutualistic fungi that

promote plant growth through the uptake of nutrients
(particularly phosphorus) in return for carbohydrates

from the plant. Over 37 species of arbuscular mycorrhi-
zal fungi have been identified in the focal field at Duke

University (Bever et al. 2001). We chose three species: an

unidentified species of Glomus (referred to as Glomus d1

in Bever et al. [1996]) which we will refer to as Glomus

white, Archeaespora trappei, and Scutellospora calo-

spora. Bever (2002) demonstrated that Archaeospora

trappei promotes Plantago lanceolata growth and

Scutellospora calospora does not. However, Scutello-

spora calospora benefits from a higher population

growth rate when grown with Plantago lanceolata.

Experimental design

We grew 70 Plantago lanceolata plants in five different

fungal treatments (the fungi Glomus white, Archaeospora

trappei, Scutellospora calospora individually, in combi-

nation, and a sterilized combination), and subjected the

plants in half of each treatment to three rounds of 20%

defoliation by Junonia coenia. Soil for the experiment

was collected from the same old field near Duke

University in North Carolina from which the P.

lanceolata plants, the three mycorrhizal fungal species,

and the Junonia coenia larvae were originally obtained.

To promote drainage in pots, the soil was mixed 1:1 with

sand and steam sterilized. Fungal inocula consisted of

spores, hyphae, host-plant (Sorghum vulgare) roots, and

soil and occupied one-sixth of the pot volume. Junonia

coenia eggs and larvae were obtained from a colony

maintained by Fred Nijhout at Duke University.

Variation in plant response to herbivory is likely to

vary due to both genetic and environmental factors, so

we controlled for this natural variation using seeds from

seven genotypes derived from mating parental genotypes

of Plantago lanceolata gathered from the old field near

Duke University. Genotypes were labeled A–G for

clarity. Inoculum was obtained from individual pure

cultures containing spores of Glomus white, Archae-

ospora trappei, and Scutelospora calospora maintained in

the greenhouses on the campus of Indiana University.

Seeds from each genotype were germinated in sterile

metromix (Scott’s/Sierra Horticultural Company,

Marysville, Ohio, USA), and following two weeks of

growth, two seedlings from each genotype were trans-

planted separately into each fungal treatment. Five weeks

following transplantation, plant size was determined by

measuring the total leaf length of the plant. The final

analysis of biomass and total leaf length revealed that

total leaf length strongly predicts total plant size (F1,91¼
5.75, R2 ¼ 0.9647). Plants were then subjected to three

rounds (at weeks 5, 6, and 7) of 20% defoliation events by

Junonia coenia larvae. We contained larvae within clip

cages (petri dish lids held together by hair clips to form

cages that easily open and close) during the duration of

the herbivory events to insure that only 20% of the total

leaf length was eaten, and empty clip cages were placed

on uneaten plants to control for clip cage effects (see

Plate 1). Beginning in week 13, plants were fertilized

every other week with a 20:0:20 NPK fertilizer providing

0.333 g of elemental N and K per plant.

Total leaf length was measured at week 5, week 6, and

week 7 to provide leaf lengths for each consecutive
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herbivory event. In addition, total leaf length was

measured at week 8, week 14, and week 20. After five

months (week 20) of growth, plants were harvested for

total, above-, and belowground biomass, reproductive

biomass (defined as the stem and flower spike), and

caudex biomass.

Statistical analysis and interpretation

Plant growth rate.—We analyzed two different mea-

sures of plant response: growth rate and final biomass.

Total leaf length strongly predicts total plant size (see

Methods: Experimental design). We calculated growth

rate on a per leaf length basis as the difference in plant

size at week 8 and plant size at week 20 divided by plant

size at week 8. Shifts in growth rate due to herbivory

reflect tolerance to herbivory. We are particularly

interested in whether plant tolerance depends on

mycorrhizal fungal inoculation. We analyzed plant

growth using a mixed-model ANOVA with genotype

as a random effect within the general linear models

procedure of SAS (SAS 2000). In this model, we tested

for differences in growth between mycorrhizal fungal

inoculation treatments using orthogonal a priori linear

contrasts within herbivory and herbivory by inoculation

terms. We decomposed the mycorrhizal fungal inocula-

tion main effects and interactions into three orthogonal

a priori contrasts: first, a comparison of growth without

mycorrhizal fungi and the average of all mycorrhizal

fungal inoculation treatments (live inocula vs. sterile

inocula); second, an examination of additivity among

mycorrhizal fungal species was tested as the difference

between the three species community treatment and the

average of the individual species (mixture vs. single-

species inocula); and third, a comparison of the

variation among the three individual fungal species (a

two degree of freedom contrast; among AMF species).

Because these contrasts are orthogonal and a priori,

their tests of significance are not adjusted for multiple

comparisons and are not dependent upon the signifi-

cance of the dissected term in the ANOVA table (Sokal

and Rohlf 1995). Comparisons between particular AM

fungal species were adjusted for multiple comparisons

using Scheffé’s method (Sokal and Rohlf 1995).

Final plant biomass.—We analyzed the difference in

final biomass produced in absence of herbivory minus

biomass produced in the presence of herbivory. Plant

tolerance to herbivory is likely a function of storage

available at the time of herbivory, and as a result we

were interested in changes with reference to storage

structures separately from allocation to photosynthetic

tissues vs. roots. Thus we calculated the root to shoot

ratio excluding the storage structure (the stem or caudex

in P. lanceolata [Gleason and Cronquist 1991]) as the

ratio of belowground plant mass (roots) to aboveground

plant mass (excluding reproductive mass and caudex

mass). Reproductive weight consisted of both stalks and

flower spikes. Response variables root-to-shoot ratio,

and caudex-to-total-plant ratio were arcsine-trans-

formed and plant total mass and reproductive mass

were log-transformed to satisfy the normality assump-

tions of the model. Dependent variables included total

plant mass, root to shoot ratio, caudex to total plant

ratio, and reproductive mass. Independent variables

included block, fungal species, plant genotype, and

herbivory. We analyzed plant mass and resource

allocation using a mixed-model ANOVA with genotype

as a random effect within the general linear models

procedure of SAS 2000. In this model, we tested for

differences in plant mass and resource allocation

between mycorrhizal fungal inoculation treatments

using orthogonal a priori linear contrasts within

herbivory and herbivory by inoculation terms.

RESULTS

There were significant differences among mycorrhizal

fungal species in their influence on plant performance

(among-species-of-inocula contrasts within fungal inoc-

ula, Table 1). The effect of herbivory on plant growth

rate depended on AM fungal species identity (P , 0.02,

Table 1). Herbivory generally reduced final plant mass,

PLATE 1. A. Bennett prepares insects and clip cages during
herbivore induction. Photo credit: Julie Gummow.
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and this did not vary greatly among inoculation

treatments (herbivory3 fungal inocula, P . 0.05; Table

1). Mycorrhizal fungal species significantly affected the

root-to-shoot ratio of plants (among-species-of-inocula

contrasts within fungal inocula, Table 1). There were no

overall significant differences between plants associated

with different species of mycorrhizal fungi in the caudex-

to-vegetative-plant-mass ratio (Fig. 3c), and this was due

to the variation in the caudex-to-vegetative-plant-mass

ratio of plants within the genotypes (genotype 3 fungal

inocula, Table 1). An additional analysis examining

genotypic correlations between the different fungal

inocula revealed no patterns in the caudex-to-vegeta-

tive-plant-mass ratio. Different mycorrhizal fungal

species also resulted in varying allocation to plant

reproduction (among species of inocula contrasts within

fungal inocula, Table 1). An examination of plant roots

in the experiment revealed that all three mycorrhizal

species colonized P. lanceolata roots both individually

and in combination (Bennett 2005).

Response of P. lanceolata associated with Glomus white

Plants associated with Glomus white experienced a high

growth rate (Figs. 1 and 2) and the greatest final biomass

(Fig. 3a). The growth rate of plants associatedwithGlomus

white did not change following herbivory (contrasts within

herbivory3 fungal inocula; Table 1, Fig. 2) resulting in a

reduced final biomass of P. lanceolata associated with

Glomus white as compared to plants that never experi-

enced herbivory (Fig. 3a). Plants associated with aGlomus

white also tended to have a greater root-to-shoot ratio in

the absence of herbivory (Fig. 3b). Genotype variation in

the ratio of caudex mass to total vegetative plant mass was

reduced in plants associated with Glomus white compared

to the level of variation found in the majority of other

fungal treatments. Reproductive biomass was greatest for

plants associated withGlomuswhite, and herbivory tended

to increase reproductive biomass for plants associatedwith

Glomus white (Fig. 3d), although this affect was not

significant (herbivory3 fungal inocula, Table 1).

Response of P. lanceolata associated with

Archaeospora trappei

Growth promotion for plants associated with Archae-

ospora trappei was less than growth promotion by

Glomus white (Figs. 1 and 3a), however plants associated

with A. trappei experienced increased growth rates

(contrasts within herbivory 3 fungal inocula; Table 1,

Fig. 2) following herbivory. As a result, the final

biomass of plants hosting A. trappei was not significant-

ly affected by herbivory (herbivory 3 fungal inocula,

Table 1). Plants associated with A. trappei tended to

have a greater root-to-shoot ratio in the absence of

herbivory (Fig. 3b). Two genotypes (D and E) experi-

enced a reduction in the ratio of caudex to vegetative

biomass when associated with A. trappei, while the

majority of the remaining genotypes varied little in

allocation to caudex. Herbivory tended to increase

reproductive biomass in plants associated with A.

trappei (Fig. 3d), although this effect was not significant
(herbivory 3 fungal inocula, Table 1).

Response of P. lanceolata associated with
Scutelospora calospora

Plant growth was not promoted by an association

with Scutellospora calospora (contrasts within herbivory
3 fungal inocula, Fig. 1). In addition, plants associated
with S. calospora experienced a reduced growth rate

following herbivory (contrasts within herbivory3 fungal
inocula; Table 1, Fig. 2). Although plant size varies little

between plants associated with S. calospora that
experienced herbivory and those that did not, the

relatively small size of these plants may have limited
our ability to detect differences between herbivory

treatments (Fig. 3a). Some genotypes (such as C and
F) had relatively low caudex-to-vegetative-plant-mass

ratios in association with S. calospora, while others
(such as A and G) had relatively high ratios resulting in

wide variation in genotypic response in the caudex-to-
vegetative-plant-mass ratio for plants associated with S.

calospora. Reproduction was not significantly different
from zero for plants associated with S. calospora (Fig.

3d).

Response of P. lanceolata associated with

a mixture of fungal species

Plants associated with all three fungal species

experienced growth and responses to herbivory similar
to those of plants associated with only Glomus white

(Figs. 1–4), and significantly greater than the average of
the three individual isolates (mixture vs. single species

contrast within fungal inocula; Table 1). Plants associ-
ated with a mixture of the fungal species experienced the

greatest growth (Fig. 2), and herbivory did not affect
plant growth rate (contrasts within herbivory 3 fungal

inocula; Table 1, Fig. 2). Plants associated with a
mixture of fungal species had the greatest final biomass,

but herbivory reduced final plant biomass (Fig. 3a) as
expected from a constant growth rate (Fig. 2). Plants

associated with a mixture of mycorrhizal fungal species
tended to have a greater root-to-shoot ratio in the

absence of herbivory (Fig. 3b), and genotypic variation
in the caudex-to-vegetative-biomass ratio was lowest for

plants associated with multiple fungal species. Repro-
ductive biomass was greatest for plants associated with a
mixture of mycorrhizal fungal species (Fig. 3d), and, in

contrast to plants associated with only Glomus white,
herbivory tended to reduce reproductive biomass,

although this trend was not significant (herbivory 3

fungal inocula; Table 1).

DISCUSSION

Growth and response to herbivory

Association with each of the fungal species resulted in
a different pattern of growth promotion and response to

herbivory. P. lanceolata plants associated with Glomus
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TABLE 1. ANOVA results for analyses of growth and final plant mass of Plantago lanceolata.

Growth rate log(plant mass) Root : shoot

Factor df SS P SS P SS P

Block 1 0.637 0.0003 0.304 0.0072 0.018 NS

Genotype� 6 0.909 NS 0.178 NS 0.206 NS

Fungal inocula� 4 12.224 ,0.0001 35.280 ,0.0001 0.734 0.0008

Live inocula vs. sterile inocula 1 1.931 ,0.0001 10.295 ,0.0001 0.022 NS
Mixture vs. single-species inocula 1 0.065 NS 5.514 ,0.0001 0.044 NS
Among species of inocula 2 9.470 ,0.0001 18.401 ,0.0001 0.668 ,0.0001
A. trappei vs. Glomus white 1 3.859 ,0.0002 2.610 ,0.0002 0.007 NS
A. trappei vs. S. calospora 1 8.993 ,0.0002 7.623 ,0.0002 0.575 ,0.0002
Glomus white vs. S. calospora 1 1.709 ,0.0002 18.351 ,0.0002 0.491 ,0.0002

Herbivory§ 1 0.130 NS 0.508 0.0352 0.008 NS

Genotype 3 herbivory 6 0.361 NS 0.422 NS 0.070 NS

Genotype 3 fungal inocula 24 1.880 0.0310 0.570 NS 0.679 0.0839

Live inocula vs. sterile inocula 6 0.342 NS 0.088 NS 0.249 NS
Mixture vs. single-species inocula 6 0.321 NS 0.153 NS 0.091 NS
Among species of inocula 12 1.217 0.0118 0.328 NS 0.339 NS

Herbivory 3 fungal inocula 4 0.413 0.0621 0.095 NS 0.209 0.0307

Live inocula vs. sterile inocula 1 0.060 NS 0.030 NS 0.009 NS
Mixture vs. single-species inocula 1 0.001 NS 0.006 NS 0.037 NS
Among species of inocula 2 0.335 0.0266 0.058 NS 0.171 0.0128
A. trappei vs. Glomus white 1 0.108 NS 0.036 NS 0.0003 NS
A. trappei vs. S. calospora 1 0.329 0.0156 0.002 NS 0.127 0.0212
Glomus white vs. S. calospora 1 0.085 NS 0.046 NS 0.145 0.0128

Error 76 3.251 3.033 1.405

Notes: Results include sums of squares (SS) and significance (P) for growth rate (calculated on a per-leaf-length basis as the
difference in plant size at week 8 and plant size at week 20 divided by plant size at week 8), log of total plant mass, arcsine-
transformed root-to-shoot ratio (calculated as ratio of root mass to the total vegetative mass, not including caudex or reproductive
mass), arcsine-transformed ratio of storage mass to total vegetative mass (calculated as the ratio of caudex mass to total plant mass
excluding reproductive mass), and arcsine-transformed ratio of reproductive mass to total plant mass of Plantago lanceolata at the
conclusion of the experiment. Contrasts within the fungal inocula, genotype-by-fungal inocula, and herbivory-by-fungal inocula
terms are represented by indentations below their respective term. Non-orthogonal contrasts within the among-species-of-inocula
contrasts are represented by additional indentation, and P values were adjusted using Scheffé’s method (Sokal and Rohlf 1995:252–
254). Genotype was considered a random effect, and thus terms were tested across the genotype interaction term. NS indicates not
significant.

� Genotype was tested across genotype 3 fungal species and genotype 3 herbivory error.
� Fungal species was tested across genotype 3 fungal species error.
§ Herbivory was tested across genotype 3 herbivory error.

FIG. 1. Aboveground growth rate (as mea-
sured by total leaf length, mean 6 SE) of
Plantago lanceolata plants associated with one
of five mycorrhizal fungal treatments: Glomus
white, down-pointing triangles; Archaeospora
trappei, squares; Scutellospora calospora, dia-
monds; a mixture of all three fungi, circles; or
sterilized spores of all three fungi, up-pointing
triangles; and subjected to two levels of herbivory
(no herbivory or three rounds of 20% defolia-
tion). Solid symbols represent plants that expe-
rienced no herbivory, and open symbols represent
plants subjected to herbivory. Lines representing
plants associated with Archaeospora trappei and
Scutellospora calospora have been highlighted in
order to better illustrate the contrast between
these plants associated with these two fungi.
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white vs. A. trappei or S. calospora experienced the

greatest growth promotion (Figs. 1, 2, and 3a), however,

an association with Glomus white did not alter plant

response to herbivory. Plants associated with Glomus

white that experienced herbivory never reached the same

size as those that never experienced herbivory (Fig. 3a),

and this is supported by the constant growth rate over

time regardless of herbivory (Fig. 2). Thus, Glomus

white contributed primarily to plant growth, and not to

tolerance to herbivory.

A different pattern appeared in plants associated with

A. trappei. A. trappei did not prove to be as great a

growth promoter as Glomus white (Figs. 1, 2, and 3a),

however plants associated with A. trappei did benefit

from increased plant tolerance to herbivory. Plants

associated with A. trappei that were subjected to

herbivory experienced an increased growth rate

(Fig. 2) such that herbivory had no effect on above-

ground plant size (Fig. 1) or final plant mass (Fig. 3a).

As a result, A. trappei contributed less to growth

promotion, but more to plant tolerance to herbivory.

Finally, association with S. calospora did not enhance

growth promotion of P. lanceolata (Figs. 1, 2, and 3a),

and even appeared to reduce plant growth in the

presence of herbivory (Figs. 2 and 3a). An association

with S. calospora tended to reduce aboveground plant

size (Fig. 1), total plant mass (Fig. 3a), and plant growth

rate (Fig. 2), while increasing plant allocation to roots

(Fig. 3b), thus limiting plant’s ability to compensate for

herbivore damage. An examination of differences in

final biomass (Fig. 3a) would suggest that tolerance to

herbivory occurred within plants associated with S.

calospora or no fungi, however, plant growth rates (Fig.

2) and allocation to reproduction (Fig. 3d) strongly

suggest otherwise. In fact, the reduction in plant growth

rate with S. calospora following herbivory suggests that

plants associated with S. calospora actually experienced

a reduction in tolerance to herbivory. The small mass of

these plants likely created a situation in which the

variation was great relative to plant size, obscuring any

possible differences in plant size that may have occurred

in the presence of herbivory. These results suggest that

P. lanceolata does not benefit, and perhaps suffers a

reduction, in growth promotion or tolerance to herbiv-

ory in association with S. calospora. These results

support the role of S. calospora in generating negative

feedback on the growth of P. lanceolata, as previous

observations have determined that S. calospora is highly

competitive on P. lanceolata (Bever 2002, Bennett 2005),

and the accumulation of S. calospora results in a decline

in the P. lanceolata–AM fungal mutualism (Bever 2002).

Plant storage apparently did not play a role in plant

tolerance to herbivory. The size of caudices, the storage

organs of P. lanceolata, did not vary with herbivory.

This suggests that either storage in caudices is not

important for plant tolerance to herbivory, or that

plants could not draw on stored resources to respond to

herbivory within a single growing season. Second, all

mycorrhizal inocula reduced allocation to caudices (Fig.

3c) (although this allocation was highly dependent on

genotype), however tolerance to herbivory increased

with one species of mycorrhizae, A. trappei. Thus, this

increase in plant tolerance to herbivory with A. trappei

did not result from a shift in stored resources within the

plant, but instead was a direct result of plant association

with A. trappei.

TABLE 1. Extended.

Storage : total plant Reproductive

SS P SS P

0.0001 NS 1.387 ,0.0001

0.019 NS 0.226 NS

0.097 0.0336 2.975 ,0.0001

0.083 ,0.0001 0.883 ,0.0001
0.009 NS 0.536 ,0.0001
0.002 NS 1.462 ,0.0001
0.001 NS 0.283 0.0052
0.0001 NS 0.507 ,0.0002
0.001 NS 1.462 ,0.0002

0.003 NS 7.85 3 10�8 NS

0.010 NS 0.111 NS

0.194 0.0070 0.496 NS

0.067 NS 0.039 NS
0.026 NS 0.265 NS
0.100 NS 0.000 NS

0.011 NS 0.065 NS
0.003 NS 0.012 NS
0.0004 NS 0.054 NS
0.009 NS 0.001 NS
0.003 NS 0.0002 NS
0.002 NS 0.001 NS
0.009 NS 0.001 NS

0.289 2.249

FIG. 2. Growth rate (mean 6 SE) of plants subjected to
herbivory (open bars) and those that did not experience
herbivory (gray bars) after three rounds of 20% defoliation by
common buckeye butterfly larvae. Growth rates were calculated
using the difference between total leaf length at week 8 (one
week following the last defoliation event) and total leaf length
at week 20 weighted by total leaf length at week 8. Differences
in growth rate varied for plants associated with Archaeospora
trappei and Scutellospora calospora.
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Examinations of plant tolerance in the presence of

mycorrhizal fungi have demonstrated no tolerance

(Borowicz 1997, Gange et al. 2002, Kula et al. 2005),

tolerance (Gange et al. 2002, Kula et al. 2005), and

increased tolerance (Kula et al. 2005) to herbivory in

final plant biomass. These studies have focused primarily

on final plant mass (but see Borowicz 1997), thus

ignoring changes in plant growth rates and resource

allocation to roots, storage, and reproduction that are

likely to vary following herbivory, as shown here. In final

biomass, the non-mycorrhizal Senecio jacobaea showed

no tolerance to herbivory in the presence of mycorrhizal

fungi (Gange et al. 2002). In contrast, a community of

mycorrhizal fungi contributed to tolerance (measured as

final biomass) in a tallgrass prairie microcosm, and this

effect was primarily driven by the increased tolerance of

two warm-season grasses (Andropogon gerardii and

Sorghastrum nutans) and a legume (Lespedeza capitata;

Kula et al. 2005). An examination of Plantago lanceolata

revealed no difference in final aboveground biomass

between mycorrhizal plants in the field that did and did

not experience herbivory, thus suggesting tolerance

(Gange et al. 2002) similar to that of plants associated

with A. trappei in this experiment. In contrast, in this

experiment, tolerance to herbivory by Plantago lanceo-

lata was dependent upon the fungal species present (Fig.

3). Thus, as demonstrated in this study, plant response to

herbivory is likely to depend on the species of mycorrhi-

zae with which a host plant associates.

Nonadditive effects of mycorrhizal fungi on plant growth

Given the response of host plants to each fungal

species individually, we can make several predictions for

FIG. 3. Representations of final biomass of plants associated with five different fungal inocula. Plants that did not experience
herbivory are represented by solid circles, and plants subjected to herbivory are represented by open circles. Error bars represent
6SE. (a) Least-square means of the log of total dry mass of plants grown with all possible fungal combinations. (b) Root-to-shoot
ratio calculated by dividing total root mass by total plant mass (not including storage or reproductive mass). (c) Ratio of storage
(caudex) mass to total plant mass (not including reproductive mass). (d) Log of reproductive mass.

FIG. 4. Plant productivity vs. diversity of fungal species (0,
1, or 3 species) associated with Plantago lanceolata. The average
growth with each fungal species individually has been added as
a reference point within the single-species diversity group. Error
bars represent 6SE.
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how they would behave in combination. First, growth

promotion of P. lanceolata associated with all three

fungal species may be the average of growth promotion

of P. lanceolata when grown alone with each fungal

species. We would expect this result if each fungal

species contributed equally to the growth of P.

lanceolata in proportion to the area of root they colonize

(and competition among fungal species did not alter

proportional colonization). For example, growth pro-

motion of strawberry plants (Fragaria 3 ananassa)

associated with two species of Glomus was the average

of growth promotion of strawberry by each fungus

individually (Gange 2001), suggesting that both species

of Glomus contribute equally to strawberry growth with

respect to the area of root they colonize. In this study, if

growth promotion was averaged with respect to the

respective proportion of initial inocula, growth of P.

lanceolata associated with all three fungal species would

have been lower than that demonstrated (Fig. 4), thus

not supporting this possibility.

Alternatively, growth promotion of P. lanceolata may

increase with each additional species of mycorrhizal

fungi with which it associates (van der Heijden et al.

1998). We would expect this result if each fungal species

contributed equally to the growth of P. lanceolata

regardless of how much root space they occupy. Thus,

each fungal species would increase plant growth in a

manner similar to that when grown alone despite a

reduction in root colonization due to competition with

other fungi. For example, Bromus inermis associated

with three different Glomus species experienced greater

growth promotion than Bromus inermis plants associat-

ed with only one of the three fungal species (Klironomos

et al. 2004), suggesting that all three species of Glomus

contributed equally to the growth of Bromus inermis

despite the potential reduction in per species fungal

colonization due to fungal competition. In this experi-

ment, if growth promotion increased with each succes-

sive species of fungi added we would expect to see

growth promotion of plants associated with all three

fungal species to be greater than that of Glomus white

alone, however this is not the case.

Finally, growth promotion of P. lanceolata could be

driven by a sampling effect, or the probability of

including a ‘‘super fungus’’ whose growth promotion

properties exceed that of other included species (Wardle

1999). This would occur if each species within a

combination did not contribute equally to the growth

of P. lanceolata. An examination of growth rate (Fig. 2)

and final biomass (Fig. 3) showed that P. lanceolata

plants associated with all three fungal species achieved

the same level of biomass as those associated with only

Glomus white, and experienced greater growth promo-

tion and little tolerance to herbivory. Thus, in this

system plant biomass, or primary productivity, is driven

by a sampling effect, or the inclusion of the dominant

fungus Glomus white.

Implications

This study demonstrated species specific host respons-

es to mycorrhizal fungi in growth promotion and plant

response to herbivory. Each fungal species promoted a

different pattern of growth and plant tolerance: Glomus

white promoted growth within plant hosts, A. trappei

promoted growth (at a reduced level) and plant

tolerance to herbivory, and S. calospora did not promote

host growth and tended to reduce plant tolerance to

herbivory. A mixture of all three fungal species resulted

in growth and tolerance patterns similar to plants

associated with Glomus white. These results suggest that

both growth promotion and plant tolerance are likely to

vary with the presence of different mycorrhizal species.

The similarities in growth response and plant toler-

ance to herbivory between plants associated with

Glomus white and a mixture of all three fungal species

suggests that the sampling effect, or the probability of

including a ‘‘super fungus’’ in higher diversity treat-

ments, explains growth and tolerance patterns within P.

lanceolata hosts associated with multiple fungi. The

presence of a single mycorrhizal fungal species driving

much of the growth response of a plant species has

important implications for plant establishment in

various habitats. Plants establishing in areas that lack

the fungus best at promoting their growth may suffer in

competitive interactions with neighboring plants and

may even be eliminated from a community.

In this study, we found a complex species-specific

interaction involving multiple trophic levels, suggesting

that community dynamics are likely products of multiple

indirect interactions leading to several possible out-

comes. This study is the first to examine individual

mycorrhizal fungal responses in a multitrophic commu-

nity. There is much work still to be done teasing apart

how mycorrhizal fungi might alter aboveground inter-

actions in both spatial and species specific contexts.
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